
THERMAL CONDUCTIVITY OF LAMINATED COMPOSITE FINITE 

BODIES OF COMPLEX CROSS SECTION TAKING THERMAL 

CONTACT RESISTANCES INTO ACCOUNT 

A. P. Slesarenko UDC 536.2.01 

A new analytical method of solving the three-dimensional stationary problem of 
the thermal conduction of laminar composite finite bodies of complex cross sec- 
tion when there is imperfect thermal contact between the layers is proposed, 
which is based on the simultaneous use of integral transformations for each 
layer, a structural method, and the Bubnov--Galerkin method. 

The thermal conduction of complex composite finite bodies (when there is imperfect ther- 
mal contact between the layers) is of considerable practical importance, since heat transfer 
in thermally protected constructions when calculating electrical and thermal insulation, 
thermal fields in elements of electronic equipment, and many other cases require the solution 
of such a problem. 

There are practically no analytical methods of solving three-dimensional problems of 
thermal conduction for laminar composite bodies of complex cross section because of a number 
of mathematical difficulties of a fundamental nature, which arise due to the need to take 
into account the geometry of the region considered (an element of the construction), and the 
interaction between an element and the surrounding medium (the matching conditions at the 
boundary). 

We will consider composite elements of spatial constructions in the form of multilayer 
bodies (the contact surface Z=ak) of complex transverse cross section, bounded by the planes 
z = 0 and z =d, and a cylindrical surface of complex form S, the generatrices of which are 

m 

perpendicular to the planes z = const (the regions Q=UQk) 
h=0 

Suppose that the determination of the temperature field in a given layer of the compo- 
site body reduces to solving the three-dimensional heat-conduction problem 

div(~kgradYh) = - -  W~, ( 1 )  

( 8T~ h~T,~) ~_~ O, -- O--~- + l~=o=O, \___O_7_z+ _ =  ( OT~ hoTo) (2) 

OT~ I _ 1 (Tk§ __T~)! L OT~ ] :% OTh+i ] (3) 
z = a k  + I 

Th ] s I~ =%h, Lh '--7-.OTko%~ s 2 h =  q~ h, (4) 

where ~ik and q2k are continuous functions specified on the surface S~ k and S2k. 

We will introduce the integral transformation 

a m m - - 1  a h + l  

Y' = y ,  z)d , (5) 
0 k=O ah 

where the kernels of the integral transformation Nk(y, z) are found by solving the equation 
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dZNa (% z) -t- 1 d~,h (z) dN~ (~, Z) @ ,~2N h (,~, Z)= 0 
dz ~ ~ (z) dz dz 

for uniform boundary conditions (2) and (3) and for ~k = const have the form 

N~ (?, z) = C~ sin ?x + C2h cos ?x. 

Here C~ = i, the coefficients C~ k and C2 k are determined taking into account the uniform 
conditions (2) and (3), and the eigennumbers Yn are found from the corresponding charac- 
teristic equation. 

Applying the integral transformation (5) to Eq. (i) and using the boundary conditions 

OZu 02u 
+ - -  - -  ~?Zu = - - W ;  

Ox~ o~ 

I - Ou I - u = qoi; - -  = q~, 
S~ 0~ 2 S~ 

(4), we obtain 

(6) 

(7) 

(8) 

(9) 

where 

m - - I  a h + l  m - - I  a h + l  

~ i =  ~ .[ ~G~ z) dz; $2.= ~.~ J q2~Nh(?, z) dz; 
h ~  0 a h h =  0 a k " 

m--1 ak+l j' 
h ~ O  a h 

The structure of the solution of problem (8) and 
ditions (9), can be written in the form [i] 

u (x, v, ~) = ~o (x, V, ~) + ~ Cu (~) Xu (x, V), 
i , ]  

where, according to [2, 3], 

(9), which accurately satisfies con- 

(io) 

Oo = + + ,4)-';  
[0 (o)~,j) 0~  + 0 ( ~ j )  0~  .]. 

X n  = o ~ g u -  ~o L Ox Ox Og Ov _ ' 

The f u n c t i o n s  ~ and m2 a r e  c o n s t r u c t e d  u s i n g  R - f u n c t i o n s  [2] and s a t i s f y  t he  c o n d i t i o n s  

~ Is, = 0; ~h > 0 (x, V) E f~; 

s~ 0o)2 = 1. c% =0; ~ 2 > 0 ( x ,  V) Ef~; O~ s, 

sys t em f o r  f i n d i n g  the  u n d e t e r m i n e d  c o e f f i c i e n t s  Cij  (~) of the  s t r u c -  The Bubnov--Galerkin 
ture of solution (i0) has the form [i] 

~ (Auh~ + ~2Bu~) Cii (~) = E~ (?), 
i+]=o 

(ii) 

(12) 

where k+s =0, l,...,n; 

Aijhs = S ;  AX,~XksdQt; Bijhs = - -  !S XijXhsdfli; 

We will obtain the solution of problem (i)-(4) in the form 

T(x, y, z)= 2 u(x, y, "~,,)G,fl (~n, z), 
n = l  
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where 

m--1 ak+l 

h=0 a h 

F o r  e x a m p l e ,  f o r  a t w o - l a y e r  b o d y  ( m = 2 ,  and z = a ~  i s  t h e  c o n t a c t  s u r f a c e  o f  t h e  
layers) with 

TI Iz=O = Ts [z=a~ = 0 (13)  

the kernels of the integral transformation (5) have the form 

Nt (?, z) : sin ~z [R~I~ cos ?a~ + sin ~ad = sin ~z[~ (V), 

Ns (?, z) = s i n  ? (a~ - -  z) s in  ? (a~ - -  a 0. 

The characteristic equation for determining the eigennumbers Yn has the form 

~i? cos V a~ sin V (as - -  ai) + ~s? cos V (a~ - -  ai) [31 (V) = 0. 

F o r  t h i s  c a s e ,  w i t h  R k = O ( k  = 1 ,  2) and m =  3 ( a  t h r e e - l a y e r  b o d y  o f  c o m p l e x  c r o s s  s e c ~  
t i o n )  t h e  k e r n e l s  o f  t h e  i n t e g r a l  t r a n s f o r m a t i o n  (5)  h a v e  t h e  f o r m  

Nt (Y, z) = (cos ya  I + fa sin 7at) sin yz (sin ?a~) -l, 

Ns (?, z) = cos Vz + fa sin ~z, 

Na (V, z) = (cos ~, as + ,fa sin ?as) sin v(aa ~ -  z)[sin ? (a~ -- as)171, 

[a = [~,~f~ cos ?a~ -- sin ?ad[cos ?a~ + ;%Vft sin ?ad -t, 

ft = sin ~at (LI~' cos va~) -I  

The e i g e n n u m b e r s  Yn c a n  b e  f o u n d  b y  s o l v i n g  t h e  c h a r a c t e r i s t i c  e q u a t i o n  

(cos ?ai  + ~V[~ sin val)(XzTfz cos ~a~ -- sin ~? az) = 0~?f~ cos va~ -- sin 7 a~)(cos ? a~ + Xs?f~ sin vas), 

where 

the 

where 

and 

[= = sin V (as - -  aa)[Lay cos ~? (as - -  a~)1-1. 

For problem (1)-(4) (a two-layer body of complex cross section, RI =0) 
integral transformation (5) have the form 

(cos va~ + [3 sin ~ a0(cos ~z + h ~  -~ sin ~z) 
N~ (~, z) = 

(cos val + h~V -~ sin ?at) 

Ars (V, z) = cos Vz + [3 sin Vz, 

For a two-layer body of complex cross section with ~i =const, ~2 = %2oZ, 
T21z=a2 =0 the kernels of the integral transformation (5) have the form 

N~ (?, z) = sin re, 

Ns (V, z) = sin Va~ [Jo (V, z) +~[3Yo (?, z)l[Jo (va~) + [3Yo (va31 -~, 

where 

the kernels of 

[3 = (V sin ?a2 h2 cos va.,)(h2 sin va2 + V cos ?as) -1, 

t h e  e i g e n n u m b e r s  Yn a r e  t h e  r o o t s  o f  t h e  e q u a t i o n  

~ ( - - ?  sin va~ + th cos ?a0(cos va, -k [3 sin V al) = (--V sin y a ( +  [3? cos ?ai)(cos va~ + h~V -I  sin va,). 
},s 

R1 = 0 ,  

= - -  Jo (,/a~) [Yo (va2)] TM, 

Xn are found by solving the characteristic equation 

%2o sin ~,a~ [J~ (?a 0 4- [3Y o (?a0l = "/cos val [70 (~,a,) -6 I~ro ('~a0l. 

and the eigenvalues 

TILE= 0 = 
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Integral transformation (5) enables the heat-conduction problem for a laminated com- 
posite body of complex transverse cross section to be reduced to a much simpler problem 
in image space, the solution of which is found by the combined use of the structural method 
and the Bubnov--Galerkin method. 

The proposed method enables one to obtain a solution of the three-dimensional heat- 
conduction problem for laminated composite bodies of complex transverse cross section with 
a high degree of ~ccuracy, since in this case it is sufficient to obtain solutions of the 
corresponding two-dimensional heat-conduction problems in image space with a specified 
accuracy. This makes this method an effective one for analyzing heat-conducting systems 

with irregular geometry. 

�9 NOTATION 

hm=~m~1; ho =ao%~1; am, ~o, heat-transfer coefficients; %k, thermal conductivity of 
the k-th layer; Rk, thermal resistances of the k-th contact; Wk, a function characterizing 
the power of the internal sources of heat of the k-th layer; and ~, transverse cross sec- 

tion of the body. 
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